Construction Testing Issues and Reports

Nayyar Siddiki, P.E. Office of Geotechnical Division, INDOT

January 28, 2020

Outlines

- 203.24 , light Weight Deflectometer
- 203.23, Dynamic Cone Penetrometer
- Subgrade Treatments (207 and 215)
- Mixed Design guidelines
- Proofrolling, 203.26
- Resilient Modulus

Compaction Requirements for Soil and Aggregate

ATTACHMENT I

	Field Testing						
Material Types	Lab Testing	Maximum Density (ITM 512) DCP (ITM 509) S(A)	DCP	Sand Cone	Moisture Test		LWD (ITM 508)
			(AASH10 T 191)	ITM 506	AASHTO T 255		
Soil	AASHTO T 99 (Method A)	х	х	х	х	N/A	N/A
Granular Soils (Soils with aggregate retained on the 3/4 in., structural backfill sizes 2 in. and 1 1/2 in., and b borrow with a similar gradation)	AASHTO T 99 (Method A or C)	N/A	NA	x	x	N/A	x
Granular Soils (Soils with 100% passing ¾ in., structural backfill Sizes 1 in., 1/2 in. No. 4, and No.30, and b borrow with a similar gradation)	AASHTO T 99 (Method A or C)	N/A	x	x	x	N/A	N/A
Coarse Aggregates (No. 43, 53, and 73)	AASHTO T 99 (Method A or C)	N/A	N/A	х	N/A	X	X
Coarse Aggregates (No. 5, 8, 9, 11, or 12)	Field testing is not required. Compaction shall be in accordance with the applicable specification.						
Chemical Modified Soils	AASHTO T 99 Performed by Contractor	N/A	X	N/A	X	N/A	X

N/A – Not Applicable

LWD LIGHT WEIGHT DEFLECTOMETER

LWD – Light Weight Deflectometer

ITM 508

ASTM E 2835 ZORN model ONLY

SECTION 203.24, LWD TEST SETUP

ALLOWABLE DEFLECTION

Allowable Average Deflection and Maximum Deflection for Chemically Modified Soils and Aggregate over Chemically Modified Soils

Material Type	Allowable Average Deflection (mm)	Maximum Deflection at a Single Test Location (mm)
Lime Modified Soil	≤ 0.30	0.35
Cement Modified	≤ 0.27	0.31
Aggregate over Lime Modified Soil	≤ 0.30	0.35
Aggregate over Cement Modified Soil	≤ 0.27	0.31

CI

ALLOWABLE DEFLECTION

Aggregate over Untreated Soils Where Proofrolling Can Be Performed

Material Thickness	Allowable Average Deflection (mm)	Maximum Deflection at a Single Test Location (mm)
6 in. Thick Coarse Aggregate No.53	≤ 0.51	0.57*
12 in. Thick Coarse Aggregate No.53	≤ 0.34	0.40**
18 in. Thick Coarse Aggregate No.53	≤ 0.31	0.35**
* When deflection exceed this value, the area shall be recompac	ted or undercut as directed. The failed area	shall be delineated prior to excavation. Deflection

* When deflection exceed this value, the area shall be recompacted or undercut as directed. The failed area shall be delineated prior to excavation. Deflec will be measured based on the top 6 in. thick coarse aggregate No. 53 layer material placed for undercut.

** The Contractor shall recompact the coarse aggregate No.53 in accordance with 301.06 .

ALLOWABLE DEFLECTION

Aggregate over Untreated Soils: Where Proofrolling Cannot Be Performed

Material Thickness	Allowable Average Deflection (mm)	Maximum Deflection at a Single Test Location (mm)
6 in. Thick Coarse Aggregate No.53	≤ 0.60	0.65*
12 in. Thick Coarse Aggregate No.53	≤ 0.47	0.03
18 in. Thick Coarse Aggregate No.53	≤ 0.44	0.52

* When deflection exceed this value, the area shall be recompacted or undercut as directed. The failed area shall be delineated prior to excavation. Deflection will be measured based on the top 6 in. thick coarse aggregate No. 53 layer material placed for undercut.

** The Contractor shall recompact the coarse aggregate No.53 in accordance with 301.06.

Notes:

1. The Engineer will perform the moisture test on in-situ soils prior to placement of coarse aggregate . If the result of the moisture test is > 13% the Engineer will contact the Geotechnical Section.

Dynamic Cone Penetrometer

Nayyar Siddiki, M.S., P.E. January 28, 2020

DCP – DYNAMIC CONE PENETROMETER

DYNAMIC CONE PENETROMETER (DCP)

Disposable DCP Cone slides on end of attachment

DYNAMIC CONE PENETROMETER (DCP)

The following laboratory tests are required:

Laboratory Test	AASHTO Requirement
Sieve Analysis	AASHTO T-88/or ASTM D-1140
Atterberg Limits	AASHTO T-90/or T-89
Moisture-Density	AASHTO T-99
Loss on Ignition	AASHTO T-267
Ca/Mg Carbonate	ITM 507*
*Not required unless shells or	density <105 lbs.

A representative soils sample (25 lbs) from project limits or borrow pit.

CONT'D.

203.23, DCP Blow Counts Chart

Textural Classification	Maximum <i>Dry</i> Density (pcf)	Optinuun Moisture Content Range (%)	Acceptable Minimum DCP value for 6 in. <i>for 95%</i> <i>compaction</i>	Acceptable Minimum DCP value for 12 in. <i>for 95%</i> <i>compaction</i>	Acceptable Minimum DCP value for 6 in or 12 in. for 100% compaction	
			CLAY SOILS			
Clay	< 105	19-24	6		*	
Clay	105 - 110	16 - 18	7		*	
Clav	111-114	14 - 15	8		*	
	SILTY SOILS					
Silty	115 - 116	12.14		9	*	
Silty	117 - 120	13-14		11	*	
SANDY SOILS						
Sandv	121-125	0 12		12	*	
Sandy	> 125	0-12		15	*	
GRANULAR SOILS - STRUCTURE BACKFILL AND A-1, A-2, A-3 SOILS						
No. 30				6	9	
No. 4				7	10	
1/2 in.				11	14	
1 in.				16	19	
Note : * Test section required in accordance with ITM 514						

DYNAMIC CONE PENETROMETER (DCP)

DYNAMIC CONE PENETROMETER (DCP)

Field Test	Test Method
One Point Proctor for Cohesive Soils	ITM 512
Dynamic Cone Penetrometer	ITM 509
Field Determination of Moisture Content of Soils	ITM 506

203.23, Moisture Compaction ranges are as follows:

Soil Type	Moisture Compaction Range		
Clay (<105 lb/cu ft)	-2 to + 2% of optimum moisture content		
Clay (105-114 lb/cu ft)	-2 to + 1% of optimum moisture content		
Silty and Sandy (>114 lb/cuft) -3% of optimum moisture content and o			
Granular	5 to 8%		
Moisture tests will be per a day for Silty, sandy and	rformed every four hours for clayey soils once		

FIELD CRITERIA FOR DCP BLOW COUNTS

M:\DTE-ME\Soils\Moisture Density Curves 2D.pdf

SECTION 207 (REVISED)

Туре	Subgrade Description		
1	24 in. of soil compacted in accordance with 203.23		
IA	[blank]		
IB			
	* 14 in chemical modification using lime		
	**14 in chemical soil modification using cement		
IC	12 in. coarse aggregate No. 53 in accordance with 301		
ID	12 in. coarse aggregate with Type 2B geotextile in accordance with 918.02(c)		
П	6 in. coarse aggregate No. 53 in accordance with 301		
HA	8 in. chemical soil modification		
III	In-place compaction in accordance with 203.23		
IV	12 in. coarse aggregate No. 53 with Type IB geogrid in accordance with 214		
IVA	12 in. coarse aggregate with Geocell confining system in accordance with 214		
V	3 in. of subgrade excavated and replaced with 3 in. coarse aggregate No. 53		

SECTION 215

Revised Maximum Soil Properties for Chemical Modification

Soil Property	Test Method	Requirement
Maximum Dry Density	AASHTO T 99	<u>≥</u> 90 pcf
Organic Material	AASHTO T 267	<u><</u> 6%
Sulfate Content	ITM 510	<u><</u> 1,000 ppm

Table 1: Minimum Soil Properties for Chemical Modification

SECTION 215

Chemical Modification Allowable Average Deflection (*revised*)

Allowable Average Deflection for Chemically Modified Soil

	Allowable	Maximum Deflection
Material Type	Average	at a Single Test
	Deflection (mm)	Location (mm)
Cement Modified Subgrade	0.27	031
Lime Modified Subgrade	0.30	0.35

LWD AND DCP TESTING FREQUENCY

The frequency of LWD and DCP testing will be three (3) tests for each 1,400 cyd of chemically modified soils.

The chemically modified soil lift shall meet the following requirements for compaction: The average DCP blow count will not be less than 17 for the top 6 in. of a 14 in. lift.

The average DCP blow count will not be less than 16 for the bottom 8 in of a 14 in. lift.

Moisture tests for chemically modified soils mixture shall be performed in accordance with ITM 506 at every 4 h during chemical and soils mixing.

One gradation test shall be performed for each 2,500 ft cyd of chemically modified soil in accordance with 215.08 and ITM 516.

Sec 203.26, PROOFROLLING

- When specified, the work shall be performed with dump truck with a minimum tire pressure of 90 psi.
- Proofrolling for embankment construction shall be performed using a 15t dump truck . Proofrolling for subgrade shall be performed using 33 t.
- Proofrolled surfaces shall be covered completely with a single pass.
- Operating speed of the truck shall not exceed 2 mph.
- Deflection or rutting in excess of 1/2 in. shall require remediation of the subgrade surface as directed.
- Deflection or rutting in excess of 3 in. shall require corrective remediation measures and the Office of Geotechnical Services will be contacted.
- Proofrolling shall be performed after remediation measures on embankment or subgrade prior to the placement of additional material.
- Failures shall be corrected.

DESIGN PROCEDURES FOR SOIL MODIFICATION OR STABILIZATION

Design Procedures for Soil Modification or Stabilization

Division of Engineering and Asset Management Office of Geotechnical Services 120 South Shortridge Road Indianapolis, Indiana 46219 January 5, 2020

CHEMICAL SOIL MODIFICATION

3.0 Design Procedures

3.1 Suggested Criteria for Chemical Selection

When the chemical stabilization or modification of subgrade soil is considered the most feasible alternative, the following criteria shall be considered for chemical selection based on the index properties of the soils.

- 1. Chemical Selection for Stabilization.
 - a. Lime¹: Clay content >30 % and PI > 20.
 - b. Cement: Clay content $\leq 30\%$ and PI ≤ 20 .
- 2. Chemical Selection for Modification
 - a. Lime: Clay content > 30% and PI > 20.
 - b Cement: Clay content $\leq 30\%$ and PI ≤ 20 .
- Note 1. Lime shall be quick or hydrated lime only and lime shall have a soluble sulfate content < 5%.
- Note 2. In lieu of lime class C fly ash with a soluble sulfate content < 5% may be used.
- Note 3. When fly ash class C is substituted in lieu of lime, a minimum corresponding strength of 50 psi gain should be obtained.
- Note 4. Use of fly ash is not permitted between October 15 and April 15. Appropriate tests showing the improvements in the strength gain and the swell reduction are essential for the exceptions listed above.
- Note 5 Lime treated soils may not provide immediate stability due to presence of high-moisture. Geotechnical consultants may recommend cement as modifier for faster strength gain in these conditions.

CHEMICAL SOIL MODIFICATION GUIDELINES

CHEMICAL SOIL MODIFICATION GUIDELINES

RESILIENT MODULUS MACHINE

Testing on Soil and Aggregate

3 in sample Cell

6 in sample Cell

RESILIENT MODULUS REQUEST INFORMATION

M_R Test Request by Consultant M_R Test Request by Consultant Submittal 🧑 Main Page 📕 Resilient Modulus Requests ... 🗶 📑 IN.gov Resilient Modulus Testing Form JIN.gov Resilient Modulus Testing Form Home / Create New Request New Resilient Modulus Test Request Resilient Modulus Requests Home Enter a Des : 1701349 Search + Add Request Des does not yet exist for this project Actions Tracking Number Status Request Date Receipt Date Y Des Information Road US 31 RM1900238 12/13/2019 ۲ Complete 12/13/2019 County Miami RM1900237 Complete 12/11/2019 12/13/2019 ۲ Fill out the following information to receive a printable packing slip to include with the soil sample submission RM1900236 Complete 12/10/2019 12/10/2019 • Boring Number • RM1900235 12/10/2019 Sample Number Complete Sample Type Select Sample Specimen Depth Textural Class Select Textural Class AA SHTO Class Select Aashto Class Group Index Liquid Limit (LL) Plastic Limit (PL) 🔊 Submit B Save

RESILIENT MODULUS ONLINE SUBMITTAL

M_R Test Request Submittal

Successfully Requested - Resilient Modulus Test Request Form Successfully Requested You have successfully submitted the resilient modulus test request. Print the page and submit it with the soil sample. Successfully Requested You have successfully submitted the resilient modulus test request. Print the page and submit it with the 🔒 Print soll sample. Tracking Number: RM2000246 Tracking Number: RM2000246 Des: Des: Road: Road: County: County: Boring: RB-1 Boring: RB-1 Sample Number: ST-1 Sample Number: ST-1 Sample Type: Shelby Tube Sample Type: Shelby Tube Specimen Depth: 2-4 Textural Class: Clay Loam Specimen Depth: 2-4 AASHTO Class: A-6 Textural Class: Clay Loam Liquid Limit (LL): 38 AASHTO Class: A-6 Plastic Limit (PL): 18 Request Date: 1/21/2020 8:21:39 AM Liquid Limit (LL): 38 Requested By: Kamran Ghani Plastic Limit (PL): 18 Company: IN Dept of Transportation Request Date: 1/21/2020 8:21:39 AM Requested By: Kamran Ghani Company: IN Dept of Transportation

Soils Laboratory Print Output

Page 1 of 1

00

Questions

