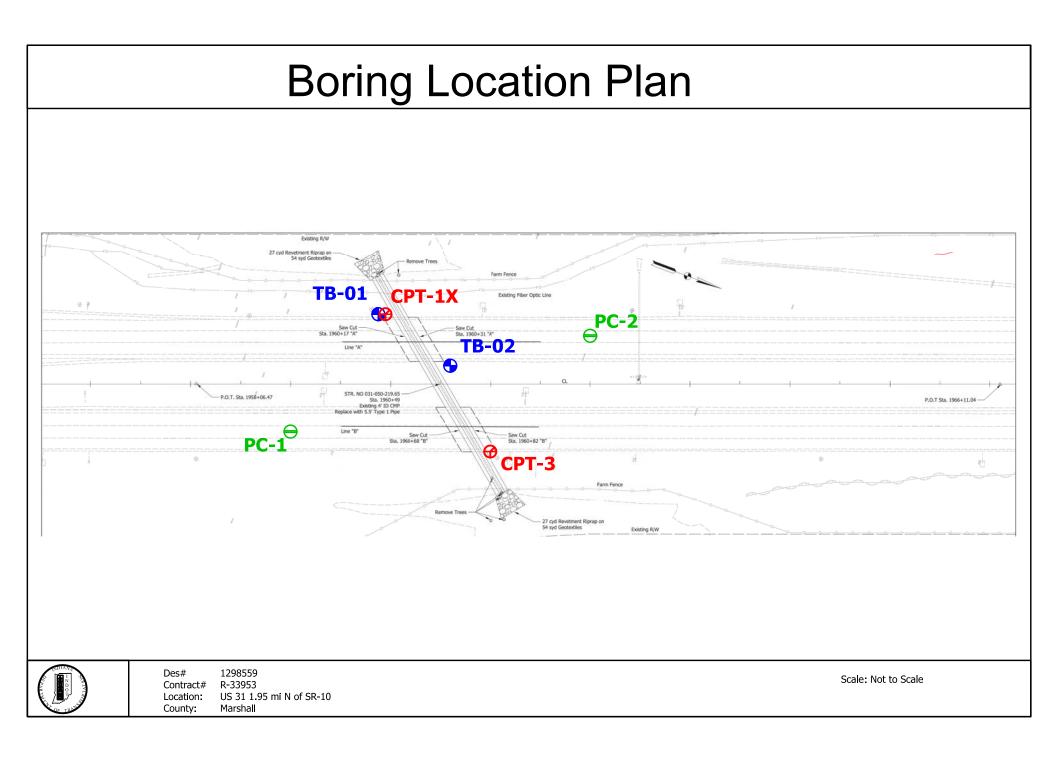
REFERENCES


- 1. AASHTO-T 88, "Determination of Grain Size Analysis of Soil".
- 2. AASHTO T-89, "Determination of Liquid Limit of Soil".
- 3. AASHTO T-90, "Determination of Plastic Limit of Soil".
- 4. AASHTO T-100, "Determination of Specific Gravity of Soil".
- 5. AASHTO M-145, "Determination of Classification of Soil".
- 6. AASHTO T-203, "Hand Auger for Subsurface Determination".
- 7. AASHTO T-207, "Shelby Tube Sampling of Soil".
- 8. AASHTO T-208, "Determination of Unconfined Compressive Strength of Soil".
- 9. AASHTO T-215, "Determination of Permeability of Soil".
- 10. AASHTO T-216, "Determination of Consolidation Test".
- 11. AASHTO T-265, "Determination of Moisture Content".
- 12. AASHTO T-267, "Determination of LOI (Loss of Ignition)".
- 13. AASHTO T-296, "Determination of Triaxial Testing" (UU).
- 14. AASHTO T-297, "Determination of Triaxial Testing" (CU).
- 15. AASHTO T-307, "Determination of Resilient Modulus".
- 16. ASTM D-2434, "A Constant Head Test to Determine the Hydraulic Conductivity of Soil".
- 17. ASTM D-2976, "Determination of pH Values of Soil"
- ASTM D-5084, "Flexible Wall Method to Determine the Hydraulic Conductivity of Fine Soils".
- 19. Bowles, J.E., (1998) "Foundation Analysis and Design", McGraw-Hill Book Company, Inc., New York.
- 20. Canadian Foundation Engineering Manual.
- 21. Das, B. M. (1988) "Principles of Foundation Engineering".
- 22. Das, B. M. (1994) "Principles of Geotechnical Engineering".
- 23. Malott ,Clyde A. (1922) Physiographic Map of Indiana
- 24. Driven 1.2 (1998) User's Manual" Publication No. FHWA-SA-98-074
- 25. EM 1110-2-1906, "Determination of Unit Weight of Soil", Engineer Manual of Soil Laboratory Test. U.S. Army Corps of Engineers.
- FHWA Manual (COM 624 Program) of Piles Analysis (FHWA IP-84-11) (Uses Wang and Reese's Method).
- 27. HFHWA-HI-88-009 Workshop Manual on Soils and Foundation, NHI Course No. 13212.
- 28. FHWA-HI-96-013 and FHWA-HI-97-014 Design and Construction of Driven Pile Foundations.

- 29. FHWA-Manual on "Design and Construction of Driven Pile Foundations", DP-66-1, January 1996.
- 30. FHWA-RD-89-043 (1990) "Reinforced Soil Structures".
- 31. FHWA-SA-96-071 (1998) "Mechanically Stabilized Earth Wall".
- 32. Gray, Henry H. (1982) Map of Indiana Showing Topography of Bedrock Surfaces
- 33. Gray, Henry H. (1988) Map of Indiana Showing Thickness of Unconsolidated Deposits.
- 34. Gray, Henry H. (1989) Indiana Geological Survey Quaternary Geological Map of Indiana
- 35. INDOT Bridge Design Memorandum #213 (1992) for Seismic Design Criteria.
- Meyerhof, G.G. (1976) "Bearing Capacity and Settlement of Pile Foundations", Journal of Geotechnical Engineering Division ASCE Vol. 1.2 No. G13 Proc. Lafer 11962 pp 195 – 228.
- 37. MN DOT (1991) Weathering Nomenclature for Rocks.
- 38. Nordlund, R.L. (1963) "Bearing Capacity of Piles in Cohesionless Soils", ASCE
- 39. Nordlund, R.L. (1979) "Point Bearing and Shaft Friction of Piles in Sand", 5th Annual Fundamentals of Deep Foundation Design. University of Missouri Rolla.
- 40. NY DOT (1977) "Prescription Values of Allowable Lateral Loads on Vertical Piles", (Uses Bron's Method of Pile Analysis).
- Peck, Hanson and Thornburn (1974) "Foundation Engineering", John Wiley and Sons N, Y. 2nd Edition.
- 42. Peck, R. P., et. al., (1953) "Foundation Engineering", John Wiley & Sons, Inc., New York.
- 43. Folk, R. L. (1980) Petrology of Sedimentary Rocks.
- Rendon-Herrero (1980) "Universal Compression Index Equation", Journal of Geotechnical Engineering Vol. 106, GTII, 1979-1200.
- 45. Schroeder, J.A., (December 1980), "Static Design Procedures for Ultimate Capacity of Deep Foundations", prepared for H. C. Nutting (in-house seminar), Cincinnati, OH
- 46. Skempton, A.W. and Bjerrum, L. (1957) "A Contribution to Settlement Analysis of Foundations in Clay Geo-technique", London, England, U.K. V.7, P. 178.
- 47. Sowers, G.F., "Introductory Soils Mechanics and Foundations: Geotechnical Engineering". MacMillan Publishing Company, Inc., New York, (1979).
- 48. Tomilson, M.J., (1970) "Some Effects of Pile Driving on Skin Friction", Conference on Behavior of Piles, Institute of Civil Engineers, London, pp., 57-66.
- 49. Tomilson, M.J. (1980) "Foundation Design and Construction", Pitman Advanced Publishing, Boston, MA. 4th edition.
- 50. Tomilson, M.J. (1985) "Foundation Design and Construction", Langman Scientific and Technical, Essex, England.
- 51. WEAP (1997) "Wave Equation Analysis for Pile Design".

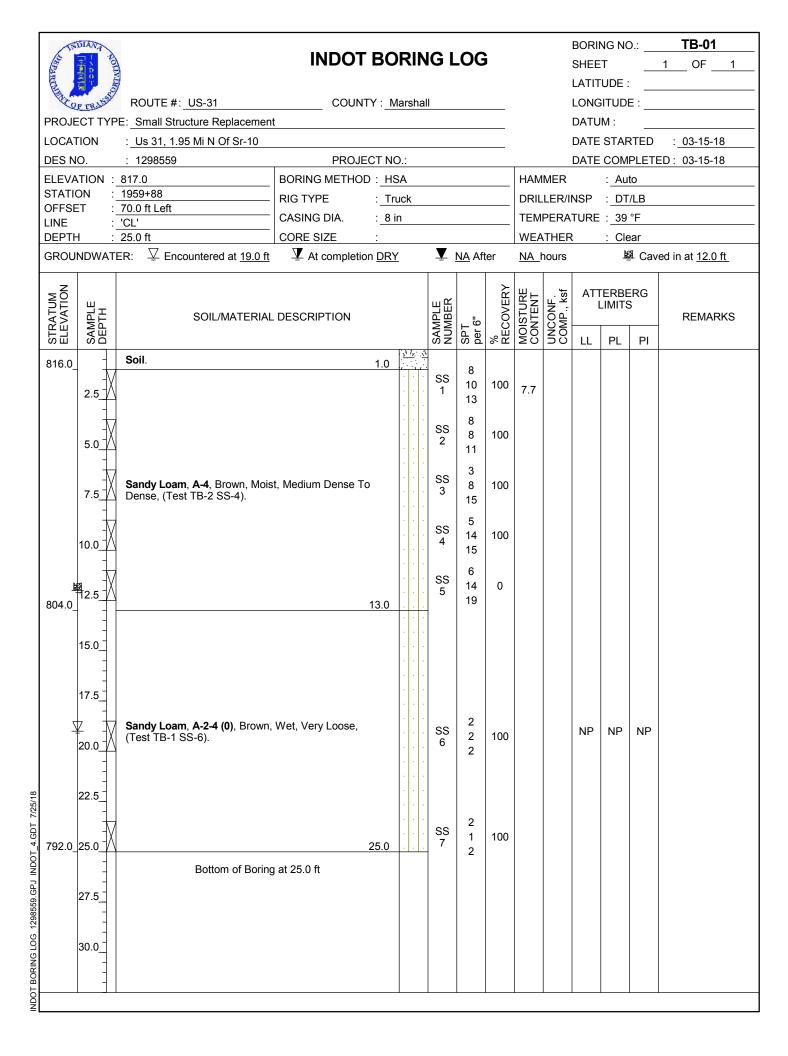
52. XSTABL (1995) "Version 5 Reference Manual Interactive Software Designs" Moscow, ID, USA

APPENDICES

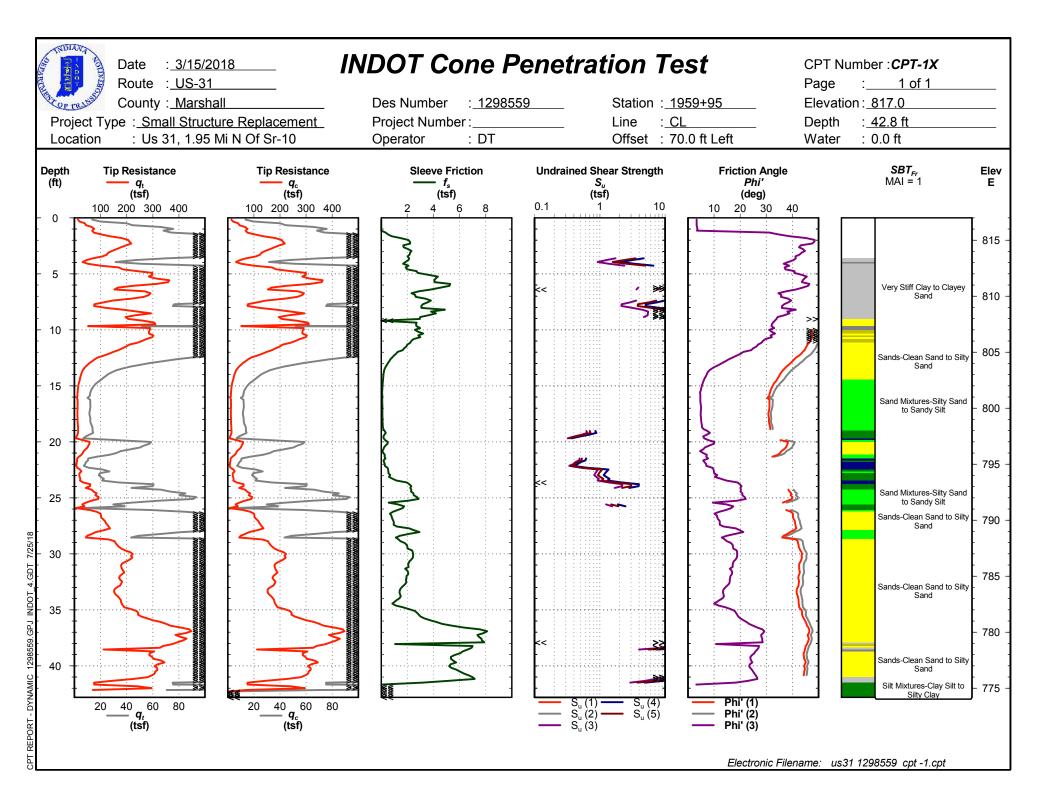
APPENDIX 1 BORING LOCATION PLAN EXAMPLE

APPENDIX 2 INDOT FIELD BORING LOG

DES. NO. ROAD NO. COUNTY: BORING NO; STA OFFSET LINE: ELEV: STRIL# LOC. LAT. LONG; BORING TYPE: RIG TYPES; HOLE DIA: DRLR: PRIMER: TEMP: WATER ADDED DURING DRULING: Yor N DEPTH ADDED; TED D SAME: NTV SAME: FIELD TED D SAME: NTV SAME: TED D SAME: NTV SAME: TED D SAME: NTV TED D SAME: NTV TED D SAME: NTV TED D SAME: NTV TED D SAME:		• •	Office	of Geote	echnica	<u>ıl Serv</u>	vices Fi	eld	Boring	Log		
STAL OFFICE LANE BLEV. STRUE. LOC LAT. LONG. BUINC TYPE RIGTYPRESE TO LE PLAT. DALR. DSP. START. COMF. WATER ADDED DURING DRILLING Y ON DEPTH ADDED: 7mb b Savent Driv. ROP & ABC. TO FIELD OFFICE SAVENT ROP & ABC. SAVENT DIFT. SAVENT ROP & ABC. SAVENT ROP & SAVENT ROP & ABC. SAVENT ROP & SAVENT ROP & SA	DES. NO.		ROAD N	0.	COUN	TV:			BU.	PINC NO		
LOC: LAT: LONG: EXAMPLE TYPE. RIG (YPRG): HOLE DIA: DRLR: INST: START: COMD: WATER ADDED DURING DRLLING YOR N DEPTH ADDED: YELD D CARE DIT NOT BOOM, ACC. FIELD OFFICE: YELD OFFICE						a.a	ELEV:				•	
EDENERG TYPE: RIG TYPE(S): HOLE DIA: DRLR: DNF: START: COMP: WATER ADDED DURING DRILLING Y or N DEPTIT ADDED: 784.00 D SAMERS DRVL BOW * REC FIELD OFFICE 1000 * REC FI	LOC:				LAT:							
WATER ADDED DURING DRILLING YOUND DEPTH ADDED: YELD D SAPPIZ DITUL PLOW PLOW <td< td=""><td></td><td>TPE:</td><td>RIG TYP</td><td>E(S):</td><td>HOLE</td><td>DIA :</td><td>DRL</td><td><u>R:</u></td><td></td><td></td><td></td><td></td></td<>		TPE:	RIG TYP	E(S):	HOLE	DIA :	DRL	<u>R:</u>				
TELD IN SAMPLE INTVL BLOW COUNT NEEC (RQD) FIELD OFFICE International International International International International International International International International International Internaternational <		·										
FIELD D SAMPLE DITA MOD COLVED COLVED Image: Sample in the second		· · · · · · · · · · · ·	TEMP			ADDED			ING You	N DEF	TH ADDED	<u>:</u>
EROUND WATER :DURING DRILLING : AT COMPLETION:24HOURS:CAVED:	FIELD ID	SAMPLE	INTVL	BLOW COUNT	<u>&</u>		FIEL	17 E 17 1			OFFICE	
EROUND WATER :DURING DRILLING : AT COMPLETION:24HOURS:CAVED:												
EROUND WATER :DURING DRILLING : AT COMPLETION:24HOURS:CAVED:												
EROUND WATER :DURING DRILLING : AT COMPLETION:24HOURS:CAVED:				Ņ						•.		
SROUND WATER: DURING DRILLING : AT COMPLETION: 24HOURS: CAVED:												
		•		· .								
			/								• •	
				•			•					
				· ·		,						
												•
BACKFILL MATERIALS: (circle) SOIL BENTONITE ASPHALT CONCRETE					-		ETION:	2	4HOURS		CAVED:	


BORING LOG CONTINUED

17


BORING NO.

BORING L	OG CONTI	NUED	· · · · · · · · · · · · · · · · · · ·		·	BORING NO.	 ·····	· · · · · · · · · · · · · · · · · · ·	
FIELD ID	SAMPLE:	INTVL	BLOW COUNT	% REC & RQD	FIEL	D	OFF	ICE	
									•
			,						
	· ·								
									-
					· · · · · ·				
									,
						E			

APPENDIX 3 INDOT BORING LOG EXAMPLE

APPENDIX 4 INDOT CONE PENTRATION TEST EXAMPLE

APPENDIX 5 INDOT PAVEMENT CORE REPORT EXAMPLE

Example Pavement Core Report

PAVEMENT CORE REPORT

Des No.:

Location:

Road	Core No.	Date Cored	Core Dia.	Station	Offset	Line

Photo of Core next to measurement tape

Photo of Core Location looking down the roadway

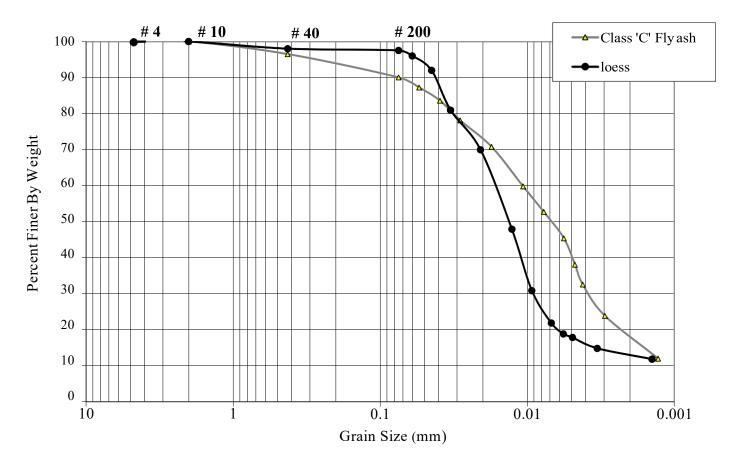
Photo inside the hole where core was extracted

Photo of the base stones at the base of the pavement core

Depth (inches)	Pavement Type	Notes

Recovered Core	In-hole Depth	Recovery (%)
Length (inches)	(inches)	

Location	Core No.	Date Cored	Core Dia.	Station	Offset	Line
SR 29	PC-2	10/17/2018	4	34+75	6 ft Lt	CL



Depth (inches)	Pavement Type	Notes
13	Asphalt	

Recovered Core	In-hole Depth	Recovery (%)
Length (inches)	(inches)	
13		100

APPENDIX 6 GRAIN SIZE EXAMPLE

Grian Size Analysis

р	oulders	Gravel				Sa	nd		Silt			Cla		
D	oulders		Coarse Fine S					SIII		у				
	nple ication.	Static	on / Offset /	/ Line		D	ept, meter	rs]	Elev. U	JSCGS	5		
RB-5	SS-3	2+300	3.0m Lt.	"A'	'		1.2 - 1.7		25			8.8 + 258.1		
Lab #	Class	Spec. Gravity	pН	% Grav	el	% Sand	% Silt	% Clay	MC %	LL	PL	PI		
N/A	Loam A-4(1)													

APPENDIX 7 CONSOLIDATION TEST (SPECIMEN DATA)

Consolidation Test (Specimen

Data)

Date:_____

Project: _____

Boring No: _____

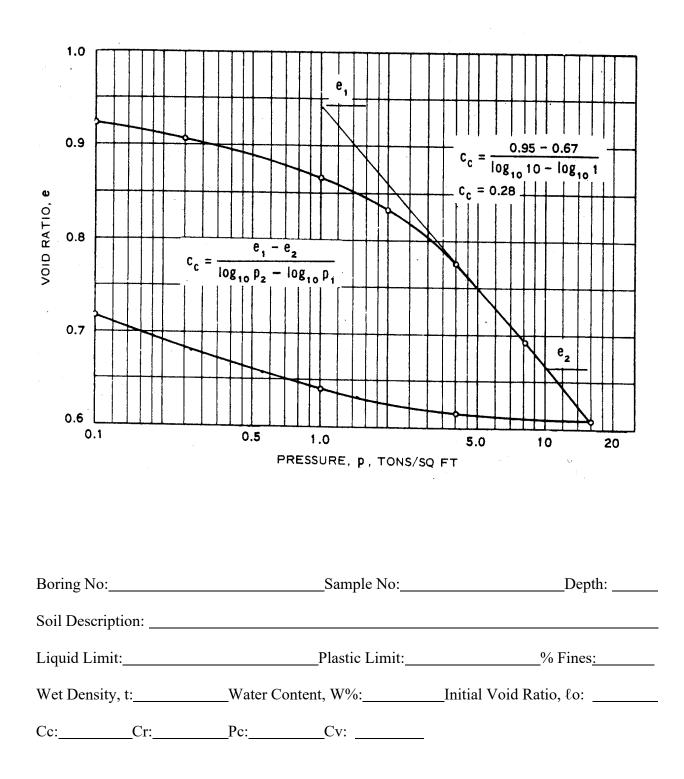
Classification:

				Before	e Test	After Test
				pecimen	Trimmings	Specimen
	Tare No.		Ring	and Plates		
_	Tare plus v	vet soil				
Weight in grams	Tare plus v Tare plus d Water	lry soil				
igh ran	Water	Ww	W_W			W _{WF}
Me Me	Ture					
	Dry Soil	Ws				
	er Content	W	WO	%	%	W _F
	olidometer N	0.			Area of specimen A, se	
•	ht of ring, g				Height of specimen, H	
Weigl	ht of plates,	g			Specific gravity of soli	ds, G _s
Net char		t of specim	ien at end	l of test, ∆H=		%.
Height o	of specimen a	at end of te	est, $Hr = 1$	H - ΔH=	in.	
Remarks	5:					
Degree Dry De	tio after tes of saturation ensity = $\frac{M}{H}$	H_s on before $\frac{V_s}{S} =$		$=\frac{H_{w}}{H-H_{s}}=-$	= -= <u> </u>	

 H_s x A
 Its et al.

 Technician:
 Computed by:

APPENDIX 8 CONSOLIDATION TEST (TIME-CONSOLIDATION DATA)


Consolidation Test (Time-Consolidation Data)

Subject:						Date:			
	0:					Cor	nsolidation]	No:	
Date & Pressur	111100	Elapsed time, min.	Dial Rdg. 10 ⁻⁴ in.	Temp. °C	Date & Pressure	Time	Elapsed time, min.	Dial Rdg. 10 ⁻⁴ in.	Temp. °C
					1				
						Technic	ian:		

APPENDIX 9 E-LOG P CURVE CONSOILDATION TEST

E-Log P Curve Consolidation

APPENDIX 10 STRAIN PERCENTAGE WORKSHEET UNCONFINED COMPESSIVE STRENGTH TEST

Strain Percentage Worksheet Unconfined

Compressive Strength Test

Project	#:	_							τ.					
								Dec	4.					
						Sc	oil Deso	cription	:					
	↓L					Sc	oil Deso	cription	:					
	↑					Sc	oil Deso	cription	::					
Strain I	Rate:	⊢	→					_Dry U	Init We	eight _				
Depth:								_Moist	ure Co	ntent _				
Sample	Location	n:												
	0	1	2	3	4	5	6 Str	7 ain Perc	8 Cent	9	10	11	12	13
	1000													
	2000													
	3000													
Pcf/kPa	4000	/												
Pa	5000								•					
	6000							\mathbf{N}						
	7000													
	8000													

APPENDIX 11 TRIAXIAL COMPRESSION TEST (SPECIMEN DATA)

Triaxial Compression Test (Specimen

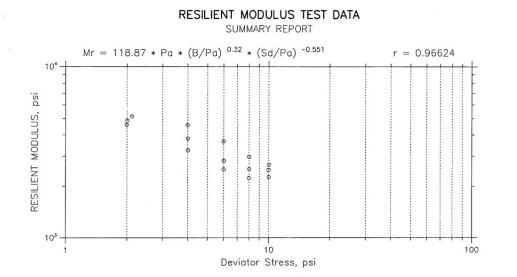
Data<u>)</u>

	Date:										
Project:				-							
Boring No:			Sample	No:							
Type of Test:									ons/sq ft		
Test No.			Classification:								
	Before	e test									
	Spe	ecimen		Trimn	nings		Speci	men			
Tare No:		^									
Tare plus wet soil											
Jare plus dry soil											
br Tare plus dry soli tip Water ioi Tare Wat Soil	W _W			V	√wo		W_{wf}				
ੱਹੋਂ Tare								•			
i≩ Wet Soil	Ws										
Dry Soil	W										
Water w				%	WO	0	∕₀ W _f		%		
Content											
		Initial (Condition	n of S	specimen						
Diameter, inch (cm)	Do		Тор		Center	Bot	tom	A	verage		
Height, cm	Ho			Vol	ume of solids		V_s				
Area sq inch = 7.854 D^2	Ao			Voi	d ratio = $(V_o$	s	e _o S				
Volume = $in.^2$	$Volume = in.^2$ V_o			Saturation, %							
Specific gravity of solids G			Dry Density, lb/cu ft					d			
Cond	ition of	Specime	n After (Consc	lidation (R a	nd S Test	ts)				
Change in height during											
consolidation, in. δH_o				Vol	ume, in. =	A _c H _c		Vc			
Height, = $H_0 - \delta H_0$ in.	H _c A _c				d Ratio = (V_0)	$(z - V_s) \div V_s$	V _s	ec			
Area, sq. in.				uration, %			Sc				
		n of Spe		fter T	est (R and S	Tests)					
Diameter, cm	Dr		Тор		Center	Bot	tom	A	verage		
Change in height during Shea					• 3						
Tests, in.	ΔH H_r				ume, in. ³ = A		.	$V_{\rm f}$			
Height, in. = $H_c - \Delta H$				d Ratio = (V_1)	e _r						
Area, sq inch	$A_{\rm f}$			Sati	uration, %			Sr			
	wf	$\frac{Ws}{Vs}$ x 100, =	$y_{p} = \frac{100 - y_{1}}{-V_{0} - I}$	$\frac{w}{x_{s}}$ 100	$s_{c} = \frac{100 - yw}{-V_{c} - V_{s}}$ $= A_{o} \frac{H_{o} - \Delta H}{-H_{o}}$	x100,					
Technician:	Comp	uted by:				Checked	l by:				

APPENDIX 12 TRIAXIAL COMPRESSION (Q) AND TEST AXIAL LOADING DATA

Triaxial Compression (Q) and Test Axial Loading Data

					Date:			
Project:								
Boring N	0:		Sample No	D:			_Test No:	
Гуре Tes	t:		Confining	Pressure:			_lb/sq ft:	
Time	Elapsed Time min.	Dial Reading 10 ⁻²	Cumulative Change (Δ H) 10 ⁻ 2 in	P Axial Load lb	P Axial Strain * <u>AH</u> H	3	$ \begin{array}{c} \wedge_{\text{corr}} = \\ \underline{A^{**}} \\ 1 - \varepsilon \text{ sq} \\ \text{in.} \end{array} $	Deviator Stress = <u>P</u> x 0.465 Corr tons/sq ft
	H _o for Q te	sts and H _c f	for R tests	H <u>o</u>	_inch (cm)		in	A _o
	H_o for Q te	ests and H_c	for R tests	H.	_inch (cm)_		in	A _o
sq in Test ti	me to failur	e	min.	Type Fa	ilure:			
<u>-</u>				Technic	ian:			


APPENDIX 13 TRIAXIAL COMPRESSION TEST (SPECIMEN DATA)

Triaxial Compression Test (Specimen

Data<u>)</u>

	Date:										
Project:				-							
Boring No:			Sample	No:							
Type of Test:									ons/sq ft		
Test No.			Classification:								
	Before	e test									
	Spe	ecimen		Trimn	nings		Speci	men			
Tare No:		^									
Tare plus wet soil											
Jare plus dry soil											
br Tare plus dry soli tip Water ioi Tare Wat Soil	W _W			V	√wo		W_{wf}				
ੱਹੋਂ Tare								•			
i≩ Wet Soil	Ws										
Dry Soil	W										
Water w				%	WO	0	∕₀ W _f		%		
Content											
		Initial (Condition	n of S	specimen						
Diameter, inch (cm)	Do		Тор		Center	Bot	tom	A	verage		
Height, cm	Ho			Vol	ume of solids		V_s				
Area sq inch = 7.854 D^2	Ao			Voi	d ratio = $(V_o$	s	e _o S				
Volume = $in.^2$	$Volume = in.^2$ V_o			Saturation, %							
Specific gravity of solids G			Dry Density, lb/cu ft					d			
Cond	ition of	Specime	n After (Consc	lidation (R a	nd S Test	ts)				
Change in height during											
consolidation, in. δH_o				Vol	ume, in. =	A _c H _c		Vc			
Height, = $H_0 - \delta H_0$ in.	H _c A _c				d Ratio = (V_0)	$(z - V_s) \div V_s$	V _s	ec			
Area, sq. in.				uration, %			Sc				
		n of Spe		fter T	est (R and S	Tests)					
Diameter, cm	Dr		Тор		Center	Bot	tom	A	verage		
Change in height during Shea					• 3						
Tests, in.	ΔH H_r				ume, in. ³ = A		.	$V_{\rm f}$			
Height, in. = $H_c - \Delta H$				d Ratio = (V_1)	e _r						
Area, sq inch	$A_{\rm f}$			Sati	uration, %			Sr			
	wf	$\frac{Ws}{Vs}$ x 100, =	$y_{p} = \frac{100 - y_{1}}{-V_{0} - I}$	$\frac{w}{x_{s}}$ 100	$s_{c} = \frac{100 - yw}{-V_{c} - V_{s}}$ $= A_{o} \frac{H_{o} - \Delta H}{-H_{o}}$	x100,					
Technician:	Comp	uted by:				Checked	l by:				

APPENDIX 14 RESILIENT MODULUS TEST DATA SHEET OMC

Resilient Modulus Test Data Sheet OMC

Nom. Max. Deviator Stress (psi) 2	Mean Deviator Stress (psi)	Std. Dev. Deviator Stress	Mean Bulk Stress	Mean Resilient Strain	Std. Dev. Resilient	Méan Resilient	Std. Dev. Resilient
Stress (psi)	Stress	Stress	000000000			Resilient	Resilient
(psi)			Stress	Charle			
	(psi)			Strain	Strain	Modulus	Modulus
2		(psi)	(psi)	(%)	(%)	(psi)	(psi)
2	2.009	0.0220	19.84	0.04	0.00	4860.1	41.03
4	3.991	0.0303	21.86	0.09	0.00	4568.2	9.500
6	5.994	0.0070	23.6	0.16	0.00	3667.4	7.16
8	8.012	0.0232	25.74	. 0.25	0.00	2976	1.64
10	10.02	0.0083	27.67	0.35	0.00	2671.8	6.384
2	2.118	0.3716	13.78	0.04	0.01	5141.3	143.7
4	4.003	0.0362	15.78	0.10	0.00	3810	7.431
6	6.011	0.0211	17.72	0.20	0.00	2820.6	7.081
8	8.007	0.0225	19.9	0.30	0.00	2523.2	1.186
10	9.988	0.0524	21.77	0.37	0.00	2492.2	3.105
2	1.994	0.0078	7.956	0.04	0.00	4586.8	26.80
4	4.005	0.0237	9.873	0.12	0.00	3253.1	8.358
6	6.003	0.0194	11.91	0.22	0.00	2515	2.565
8	7.992	0.0287	13.92	0.33	0.00	2232.9	1.695
10	10	0.0026	15.93	0.41	0.00	2262.5	0.5594
	6 8 10 2 4 6 8 10 2 2 4 4 6 8	6 5.994 8 8.012 10 10.02 2 2.118 4 4.003 6 6.011 8 8.007 10 9.988 2 1.994 4 4.005 6 6.003 8 7.992	6 5.994 0.0070 8 8.012 0.0232 10 10.02 0.0083 2 2.118 0.3716 4 4.003 0.0362 6 6.011 0.0211 8 8.007 0.0225 10 9.988 0.0524 2 1.994 0.0078 4 4.005 0.0237 6 6.003 0.0194 8 7.992 0.0287	6 5.994 0.0070 23.6 8 8.012 0.0232 25.74 10 10.02 0.0083 27.67 2 2.118 0.3716 13.78 4 4.003 0.0362 15.78 6 6.011 0.0211 17.72 8 8.007 0.0225 19.9 10 9.988 0.0524 21.77 2 1.994 0.0078 7.956 4 4.005 0.0237 9.873 6 6.003 0.0194 11.91 8 7.992 0.0287 13.92	6 5.994 0.0070 23.6 0.16 8 8.012 0.0232 25.74 0.25 10 10.02 0.0083 27.67 0.35 2 2.118 0.3716 13.78 0.04 4 4.003 0.0362 15.78 0.10 6 6.011 0.0211 17.72 0.20 8 8.007 0.0225 19.9 0.30 10 9.988 0.0524 21.77 0.37 2 1.994 0.0078 7.956 0.04 4 4.005 0.0237 9.873 0.12 6 6.003 0.0194 11.91 0.22 8 7.992 0.0287 13.92 0.33	6 5.994 0.0070 23.6 0.16 0.00 8 8.012 0.0232 25.74 0.25 0.00 10 10.02 0.0083 27.67 0.35 0.00 2 2.118 0.3716 13.78 0.04 0.01 4 4.003 0.0362 15.78 0.10 0.00 6 6.011 0.0211 17.72 0.20 0.00 8 8.007 0.0225 19.9 0.30 0.00 10 9.988 0.0524 21.77 0.37 0.00 2 1.994 0.0078 7.956 0.04 0.00 4 4.005 0.0237 9.873 0.12 0.00 6 6.003 0.0194 11.91 0.22 0.00 8 7.992 0.0287 13.92 0.33 0.00	6 5.994 0.0070 23.6 0.16 0.00 3667.4 8 8.012 0.0232 25.74 0.25 0.00 2976 10 10.02 0.0083 27.67 0.35 0.00 2671.8 2 2.118 0.3716 13.78 0.04 0.01 5141.3 4 4.003 0.0362 15.78 0.10 0.00 3810 6 6.011 0.0211 17.72 0.20 0.00 2820.6 8 8.007 0.0225 19.9 0.30 0.00 2523.2 10 9.988 0.0524 21.77 0.37 0.00 2492.2 2 1.994 0.0078 7.956 0.04 0.00 4586.8 4 4.005 0.0237 9.873 0.12 0.00 3253.1 6 6.003 0.0194 11.91 0.22 0.00 2515 8 7.992 0.0287 13.92 0.33

Project: Covington	Location: Allen Co.	Project No.: DES 0710928			
Boring No.: RB - 2A	Tested By: LS	Checked By:			
Sample No.: 10-RM001~2	Test Date: 01/15/2010	Depth: 1' - 3'			
Test No.: #2	Sample Type: remolded	Elevation: n/a			
Description: CLAY A- 6 (9)Maxir	num Dry Density 110.7 pcf and 17.1% Op	timum Moisture			
Remarks: Tested at 2% above Optimu	ım Moisture Content. (Permanent Strain	= 0.34328% after Conditioning Sequence)			
File: C:\Documents and Settings\MRS	PITSY\Desktop\RM file\2010\RM001\10-F	RM001~2.dat			

™ue, 19-JAN-2010 09:42:00

APPENDIX 15 SUBGRADE EVALUATION EXAMPLE

Boring No.	Sta	Offset	Line	Sample No	Depth (ft.)	Soil Type	AASHTO Class.	SPT (N)	In-situ Dry Density (pcf)	Max. Dry Density (pcf)	In-situ % Comp action	Nat. Moisture (%)	Opt iMoisture (%)	% Moi Diff
RB-06	276+00	20' Lt	"A"	SS-1	2.0-3.5	Loam	A-6	5	110.9	110.0	100.8	14.5	17.8	-3.3
RB-09	290+00	20' Rt	"A"	SS-2	3.5-5.0	Silty Clay Loam	A-6	13	111.5	110.0	101.4	17.6	17.8	-0.2
RB-11	303+00	30' Rt	"A"	SS-1	1.5-3.0	Silty Clay Loam	A-6	7	109.1	110.0	99.2	17.8	17.8	0.0
RB-16	322+50	35' Lt	"A"	SS-1	2.0-3.5	Silty Clay Loam	A-6	9	108.3	110.0	98.4	16.0	17.8	-1.8
RB-22	343+00	20' Lt	"A"	SS-1	2.0-3.0	Loam	A-6	9	119.5			110.6		
RB-27	385+00	35' Lt	"A"	SS-1	2.0-3.0	Silty Clay Loam	A-6	10	109.8	110.0	99.8	12.7	17.8	-5.1
RB-36	440+00	15' Lt	"PR-A"	SS-2	1.5-3.5	Silty Clay Loam	A-6	12	108.2	110.0	98.3	18.7	17.8	0.9

Subgrade Evaluation (example)

APPENDIX 16 PEAT UNIT WEIGHT EXAMPLE

Boring No.	Station	Offset	Line	Sample No.	Depth (feet)	Soil Type	AASHTO Class.	SPT (N)	Natural Moisture (%)	Max. Dry Density (pcf)
RB-17B	326+00	98'Rt	"A"	ST-2	16.0-18.0	Silty Clay w/Little Organic Matter	A-7-5	0	82.6	91.8
RB-17B	326+50	98'Rt	"A"	SWT-9	33.5-35.0	33.5-35.0 Silty Clay w/Little Organic Matter		0	103.6	90.2
RB-17B	326+50	98'Rt	"A"	ST-3	36.0-38.0	Silty Clay w/Little Organic Matter	A-7-5	0	71.5	81.0
RB-18	326+50	54'Lt	"A"	SS-1	0.5-2.0	Silty Clay w/Traces of Organic Matter	A-6	2	55.4	92.3
RB-18	326+50	54'Lt	"A"	SS-4	8.5-10.0	Silty Clay w/Little Organic Matter	A-7-5	0	65.0	93.2
RB-18	326+50	54'Lt	"A"	SS-9	21.0-22.5	Silty Clay w/Little Organic Matter	A-7-5	0	119.1	88.8
RB-18B	328+00	51'Lt	"A"	SS-2	3.0-4.5	Silty Clay w/Little Organic Matter	A-7-5	1	89.1	105.2*
RB-19	332+15	35'Rt	"A"	SS-1	1.0-2.0	Silty Clay w/Traces of Organic Matter	Visual	25	35.4	110.3*
Average of Peat Unit Weight							89.5*			
RB-18D	326+50	30'Lt	"A"	SS-4	8.5-10.0	Loam	A-7-6	16.3	16.3	120.9*
RB-18 E	326+45	54'Lt	"A"	ST-1	5.0-7.0	Clay w/Little Organic Matter	Visual	75.6	75.6	119.8

Peat Unit Weight (example)

* Not included in average

APPENDIX 17 TOPSOIL TEST RESULTS TABLE

INDIANA DEPARTMENT OF TRANSPORTATION OFFICE OF GEOTECHNICAL SERVICES

Summary of Existing Topsoil Test Results for use with Plant Growth Layer

Date: 3/14/2018

Des. No.: 1298559

Project: US 31 Small Structure Pipe Lining

Location: US 31

					ANALYSIS							
REF.		ION		AASHTO T 289	AASHTO T 88 and T 89	AASHTO T 267 and T 21**	Bray P-1 Equivalent	NCRRP 221, Chapt 7***				
Boring Log	Station (Road Post)	Offset (feet) Lt/Rt		1	pН	Gravel*	Sand	Silt	Clay	Organic Content	Phosphorus (ppm)	Potassium (ppm)
C	`````			(inch)	(% by Weight)				(% by Wt) (ppin)	(11)		
TB-1	9+38	18	Rt	6" - 12"	8.8	22.4	58.8	10.3	3.8	2.1	7	39
TB-2	10+10	18	Lt	6" - 12"	8.9	28.5	55.2	9.7	4.7	2.3	8	57
TB-3	10+50	68	Rt	6" - 12"	8.6	26.3	56.4	11.1	5.1	1.9	4	37
					/ -							
	Ace	ceptable I	Ranges pe	r 914.01 =	6.0 - 7.3	N/A	5 - 50%	30 - 80%	5 - 30%	3 - 10%**	20 - 80	105 - 250

* For informational purposes only

** In Davies, Gibson, Knox, Pike Posey, and Vanderburgh Counties, AASHTO T 21 shall also be performed. Acceptable range is 4 - 10%

*** North Central Regional Research Publication 221, Chapter 7

Note: All existing topsoil test results presented herein are for information only.

Rev 11/17

APPENDIX 18 MSE WALL DESIGN AND GEOTECHNICAL CHECK TABLE

MSE Wall Design Parameter and Geotechnical Check Table

Design Parameter	Value (area 1)*
Maximum Calculated Settlement	"x" inches
Maximum Differential Settlement	"y" inches
Time for settlement completion	"z" days
Maximum wall height	XX ft
Design Recommendations	
Minimum Reinforcement Length/Height Ratio	0.75H (example)
Undercut required	yes /no
Undercut depth	X feet
Undercut area	from Sta. XX to XX line "XX"
Undercut Backfill Material	XXXXXXX
Seismic recommendation	
Site Class	
Seismic Zone	
Peak Ground Acceleration As	
Geotechnical Analysis Checks	CDR
Sliding	>=1.0
Eccentricity	>=1.0
Global Stability	Factor of safety/ resistance factor
Factored Bearing Resistance	5400 psf (example value
Foundation Soils Strength Parameters**	
Cohesion	
internal friction angle	

Notes:

*more sheets can be added to include recommendations for each area of concern.

**if varying soil conditions encountered underneath the MSE wall, the table can be expanded to include all soil profile information

APPENDIX 19 INDOT CHECKLIST FOR RETAINING STRUCTURES

INDOT Check List for Retaining Structures

Masonry Retaining Wall

*Indicates higher likelihood

Wall Facing & Vertical Support Columns are susceptible to show...

-Delamination/Spall/ Patched Area

-Exposed Rebar/Welded Wire Fabric/Strands

-Efflorescence/Rust Staining

-Mortar Breakdown (Cracking)*

-Split/Spall

-Patched Area

-Masonry Displacement*

-Distortion

-Bulging*

-Vertical Rotation

-Horizontal Rotation

-Separation*

-Graffiti

-Vegetation Growth

-Freeze-thaw Damage

-Leakage

-Erosion

-Damage (from impact)

Horizontal Coping, Vertical coping, and Masonry Architectural Facing is susceptible to show...

-Everything listed in first column **EXCEPT** for <u>erosion</u>.

Wall Railing (masonry) is susceptible to show...

-Everything in first column **EXCEPT** for <u>leakage</u> and <u>erosion</u>.

R.C. Cantilever & R.C. Counterfort Retaining Wall

(Reinforced Concrete)

*Indicates higher likelihood

Wall Facing & Vertical Support Columns are susceptible to show...

-Delamination/Spall/ Patched Area

-Exposed Rebar/Welded Wire Fabric/Strands

-Efflorescence/Rust Staining

-Cracking*

-Abrasion/Wear

-Distortion

-Bulging*

-Vertical Rotation

-Horizontal Rotation

-Separation

-Graffiti

-Vegetation Growth

-Freeze-thaw Damage

-Leakage

-Erosion

-Damage (from impact)

Spread Footing & Pile/ Caissons are susceptible to show...

-Scour

-Everything listed in first column **EXCEPT** for <u>bulging</u>, <u>vertical rotation</u>, <u>horizontal</u> <u>rotation</u>, <u>separation</u>, and <u>leakage</u>.

Horizontal Coping, Vertical Coping, and Concrete Architectural Facing is susceptible to show...

-Everything listed in first column **EXCEPT** for <u>erosion</u>.

Wall Railing (concrete) is susceptible to show...

-Everything listed in first column **EXCEPT** for <u>abrasion/wear</u>.

Prestressed Concrete

R.C. Cantilever & R.C. Counterfort retaining walls made from pre-stressed concrete have all of the same susceptibilities as reinforced concrete with one exception, all elements are also susceptible to show <u>exposed</u> <u>prestressing</u>.

Cantilever Sheet Pile Retaining Wall

*Indicates higher likelihood

Wall Facing & Vertical Support Columns are susceptible to show...

-Corrosion*

-Cracking

-Connection Distress

-Distortion

-Bulging

-Vertical Rotation

-Horizontal Rotation

-Separation

-Graffiti

-Vegetation Growth

-Leakage

-Erosion

-Damage (from impact)

Horizontal Coping, Vertical coping, and Steel Architectural Facing is susceptible to show...

-Everything listed in first column **EXCEPT** for <u>erosion</u>.

Pile/Caissons are susceptible to show...

-Scour

-Settlement

-Everything listed in first column **EXCEPT** for <u>bulging</u>, <u>vertical rotation</u>, <u>horizontal</u> <u>rotation</u>, <u>leakage</u>, and <u>separation</u>.

Wall Railing (steel) is susceptible to show...

-Everything in first column **EXCEPT** for <u>settlement</u> and <u>erosion</u>.

Anchored Bulkhead Retaining Wall

Anchored Bulkhead Retention Walls have all of the same susceptibilities as Cantilever Sheet Pile retention Walls. However, they also include an anchorage, which introduce defects specific to the anchor. These include...

-Corrosion	-Deterioration	-Effectiveness of Anchor (slippage)
-Connection Distress	-Distortion	-Damage (from impact)

Diaphragm, Bored Pile, & Soldier Pile Retaining Wall

*Indicates higher likelihood

Wall Facing & Vertical Support Columns are susceptible to show...

-Delamination/Spall/ Patched Area

-Exposed Rebar/Welded Wire Fabric/Strands

-Efflorescence/Rust Staining

-Cracking*

-Abrasion/Wear

-Distortion

-Bulging*

-Vertical Rotation

-Horizontal Rotation

-Separation

-Graffiti

-Vegetation Growth

-Freeze-thaw Damage

-Leakage

-Erosion

-Damage (from impact)

Horizontal Coping, Vertical Coping, and Concrete Architectural Facing is susceptible to show...

-Everything listed in first column **EXCEPT** for <u>erosion</u>.

Wall Railing (concrete) is susceptible to show...

-Everything listed in first column **EXCEPT** for <u>abrasion/wear</u>.

Pile/Caissons are susceptible to show...

-Scour

-Everything listed in first column **EXCEPT** for <u>bulging</u>, <u>vertical rotation</u>, <u>horizontal</u> <u>rotation</u>, <u>separation</u>, and <u>leakage</u>.

Anchorage is susceptible to show...

-Corrosion	-Deterioration	-Effectiveness of Anchor (slippage)
-Connection Distress	-Distortion	-Damage (from impact)

Reinforced Earth & Mechanically Stabilized Earth (MSE)

Retaining Wall

*Indicates higher likelihood

Wall Facing & Vertical Support Columns are susceptible to show...

-Delamination/Spall/ Patched Area

-Exposed Rebar/Welded Wire Fabric/Strands

-Efflorescence/Rust Staining

-Cracking*

-Abrasion/Wear

-Distortion

-Bulging

-Vertical Rotation

-Horizontal Rotation

-Separation

-Graffiti

-Vegetation Growth

-Freeze-thaw Damage

-Leakage

-Erosion

-Damage (from impact)

Horizontal Coping, Vertical Coping, and Concrete Architectural Facing is susceptible to show...

-Everything listed in first column **EXCEPT** for <u>erosion</u>.

Pile/Caissons are susceptible to show...

-Scour

-Everything listed in first column **EXCEPT** for <u>bulging</u>, <u>vertical rotation</u>, <u>horizontal</u> <u>rotation</u>, <u>separation</u>, and <u>leakage</u>.

Anchorage is susceptible to show...

-Corrosion

-Deterioration

-Effectiveness of Anchor (slippage)

-Connection Distress

-Distortion

-Damage (from impact)

Timber/Bin/Wire Retaining Walls

*Indicates higher likelihood

Wall Facing & Vertical Support Columns are susceptible to show...

-Connection Distress -Decay/Section Loss* -Check/Shake -Crack (Timber) -Split/Delamination* -Abrasion/Wear -Distortion -Bulging* -Vertical Rotation -Horizontal Rotation -Separation -Graffiti -Vegetation Growth -Leakage -Settlement -Erosion -Corrosion* -Damage (from impact)

Pile/Caissons are susceptible to show...

-Scour

-Settlement

-Everything listed in first column **EXCEPT** for <u>bulging</u>, <u>vertical rotation</u>, <u>horizontal</u> <u>rotation</u>, <u>leakage</u>, and <u>separation</u>.

Horizontal Coping, Vertical Coping, and Timber Architectural Facing is susceptible to show... -Everything listed in first column EXCEPT for <u>erosion</u>.

Wall Railing (timber) is susceptible to show...

-Everything listed in first column **EXCEPT** for <u>leakage</u> and <u>erosion</u>.

APPENDIX 20 PERFORMANCE CRITERIA REPORT

Performance Criteria Report

Geotechnical Engineering

Report Completion

<u>Schedule</u>		Schedule
Did the con	sultant meet the delivery schedule?	
	Exceeds - An acceptable final product was delivered more than 30 calendar days ahead of schedule.	
	Above Average - An acceptable final product was delivered more than 14 but less than 30 calendar days ahead of schedule.	
	Satisfactory - An acceptable final work product was delivered within the scheduled time.	
	Improvement Required - An acceptable final work product was delivered up to two months behind schedule.	
	Unsatisfactory - An acceptable final work product was delivered more than two months behind schedule.	
	Not Applicable - Not Applicable	
<u>Budget</u>		Budget
Did the con	sultant deliver the services cost effectively?	
	Exceeds - The consultant improved the operations budget more than 10%.	
	Above Average - The consultant improved the operations budget more than 5%.	
	Satisfactory - The consultant maintained the operations budget within 5%.	
	Improvement Required - The consultant had budget slippage of 5% to 10%.	
	Unsatisfactory - The consultant exceeded the budget by more than 10%.	
	Not Applicable - Not Applicable	
Drilling P	rocedure	Quality
Were samp	les collected in accordance with INDOT standards?	
	Satisfactory - All samples were collected in accordance with INDOT standards.	
	Improvement Required - Some samples were not collected in compliance with INDOT standards.	
	Insatisfactory - Most samples were not in compliance with INDOT standards. As a result the consultant was	

Unsatisfactory - Most samples were not in compliance with INDOT standards. As a result the consultant was instructed to remobilize and collect the required samples.

24 Hour Water Levels

Were 24 hour water levels recorded for boreholes at the appropriate time?

Satisfactory - 24hr water level readings were recorded.

Improvement Required - 24hr water level readings were not recorded in boreholes.

Unsatisfactory - No 24hr water level readings were recorded.

Not Applicable - Not Applicable

Quality

Performance Criteria Report

Geotechnical Engineering

Backfilling Boreholes	Quality
Were boreholes appropriately backfilled?	
Satisfactory - All boreholes were backfilled.	
Improvement Required - Some boreholes backfilled correctly, consulta	ant requested to go back and fill unfilled holes.
Unsatisfactory - None of the boreholes were backfilled. Consultant wa	is required to go back and fill the holes.
Traffic Control	Quality
Were appropriate traffic control measures followed?	
Satisfactory - Met all requirements.	
Improvement Required - Was incomplete and required major revisions).
Unsatisfactory - Consultant did not have traffic control when it was requ	uired.
Laboratory Procedures	Quality
Were laboratory tests performed in accordance with requirements?	
Above Average - All tests were performed in accordance with standard plots of test data.	ls and requirements, with additional graphs and
Satisfactory - All tests were performed in accordance with standards ar	nd requirements.
Improvement Required - Some tests were not performed in accordance	e with standards and requirements.
Unsatisfactory - None of the tests were performed in accordance with t	the standards and requirements.
Engineering Recommendations	Quality
Were engineering recommendations technically correct and economically effective?	
Exceeds - Engineering recommendations were both technically correct engineering solutions. No revisions were required to the original submit	-
Above Average - Engineering recommendations were technically corre engineering solutions. Minor revisions were required to the original sub	•
Satisfactory - Engineering recommendations were adequate. Revision	is were required to the original submittal.
Improvement Required - Initial engineering recommendations were ina original submittal.	adequate. Revisions were required to the
Unsatisfactory - Initial engineering recommendations were inadequate required and multiple submittals were required to achieve an acceptable	
Operations Responsiveness	Responsiveness
Willingness to answer questions and make appropriate changes to plans/documents.	
Exceeds - Willingness to answer questions and make requested chang addressing project issues.	es exceeded expectations and was proactive in

Performance Criteria Report

Geotechnical Engineering

Above Average - The consultant revised plans/documents in accordance with comments and made additional improvements that had not been suggested but resulted in an improved product. Readily explained revisions and answered all questions.

Satisfactory - The consultant did revise the plans/documents in accordance with the comments and/or explained why revisions were not made and showed a willingness to answer questions.

Improvement Required - The Consultant did not revise some of the plans/documents in accordance with the comments and did not explain why some of the revisions were not made. Consultant showed some cooperation in answering questions but required several requests.

Unsatisfactory - The consultant did not comply with any of the above.

APPENDIX 21 SOIL PARAMETERS FOR PAVEMENT DESIGN

Soil Parameters for Pavement Design

Work Trees		oil Parameters for P		Courfs as	Dubblingtion on
Work Type	New Roadway	Pavement	Pavement	Surface Treatment	Rubblization or
	Alignment	Replacement or Reconstruction	Improvement Projects	Projects	Full Depth Reclamation, FDR
Soil Parameters	Anginnent	Reconstruction	riojecis	riojecis	Reclamation, PDR
Required					
Resilient Modulus	Х	Х			Х
(MR)* of predominant					
soils of prepared					
subgrade, psi					
Le site MD ferreret en 1 et	X				X
In situ MR for cut and at grade, psi					
In situ MR of foundation			X		
soils, taken at 1-5 ft			74		
MR Historical Data				X	
Predominant Soil Type	X	Х	Х	X	X
% Passing #200	X	X	X	X	X
% Silt	X	X	X		X
% Clay	X	X	X		X
LL and PI, %	X	X	X	X	X
	X	X	Λ	Λ	X
Altered Soils AASHTO	Λ	Λ			Λ
classification after					
Subgrade Stabilization /					
Modification					
Subgrade Treatment Type	X	Х			X
Depth to Water Table	X	Х	Х	X	X
Range					**
Subgrade Moisture	X	Х	Х		X
Range, %					**
	Х	Х	X		X
Optimum Moisture Content, %	24	28	74		24
	X	X	X	X	X
Organic Content Range, % (if encountered)	Λ	Λ	Λ		Λ
Marl Content Range, %	Х	Х	X	X	X
(if encountered)	21	71	11	1	1
Estimated Hydraulic	Х	X			X
Conductivity of subgrade,	Λ	Λ			Λ
ft. /day					
Subgrade Sulfate Content	X	Х	Х		X
Range, ppm					
Rock Elevation, ft.(if	X	Х	Х		X
encountered)					
Geotextile Type for	X	Х	Х		Х
Underdrains, if needed					
Foundation Treatment	Х	Х			Х
Other important			Х		
information					
X Z (1) (1)	•	0 1 1			

X represents the parameters that are require for each project type.

* At 95% optimum moisture content